	Datasensing S.r.I. Strada S. Caterina, 235 41122 Modena ItalyTel. +39059420411 Fax +39 059253973 www.datasensing.com	CX2 SERIES LIGHT CURTAINS	LANGUAGE
${ }_{\text {Italian Sensors Technology }}$		Installation and Operation Manual	ENGLISH

MS		CX2 SERIES LIGHT CURTAINS	LANGUAGE
		Installation and Operation Manual	ENGLISH

SUMMARY

1.0 A GENERAL 3
1.1 Function of this manual 3
1.2 Explanation of symbols 3
2.0 SAFETY AND PROPER USE 3
3.0 PRODUCT DESCRIPTION 4
3.1 Short description 4
3.2 Available models 5
4.0 START-UP INSTRUCTIONS 7
4.1 Mechanical mounting of CX2 models 7
4.2 Electrical installation 7
4.3 Alignment of CX2EORB models 7
4.4 Verify alignment for CX2 models 7
4.5 Electrical drawing 8
4.5 Panel indications and diagnostics 10
5.0 TECHNICAL SPECIFICATIONS 11
5.1 Detection capability 12
6.0 MECHANICAL DIMENSIONS OF LIGHT CURTAINS AND STANDARD ACCESSORIES 14
6.1 Mechanical dimensions of CX2 light curtains 14
6.1 Standard Mounting accessories 14
7.0 MOUNTING OF CX2 LIGHT CURTAINS 15
8.0 LIST OF AVAILABLE ACCESSORIES 15
9.0 PACKAGE CONTENT 15
10.0 CONTROL OF THE INSTALLED LIGHT CURTAINS 16
10.1 Purpose of controls. 16
10.2 Preliminary controls before start-up 16
10.3 Controls device efficiency 16
11.0 CE-CONFORMITY DECLARATION 16
12.0 WARRANTY 16

$M S^{\circ}$		CX2 SERIES LIGHT CURTAINS	LANGUAGE
		Installation and Operation Manual	ENGLISH

1.0 A GENERAL

Please attentively read this manual before installation, start-up, use and maintenance of CX2 light curtains. This manual contains detailed instructions that must be carefully followed.

THIS MANUAL IS NOT IN THE ORIGINAL LANGUAGE

1.1 Function of this manual

This manual provides the user with the necessary instructions for safe and proper installation, electrical connection, start-up, use and maintenance of CX2 light curtains.

1.2 Explanation of symbols

Warning

A warning sign indicates actual of potential hazards.
It indicates procedures and behaviours which can be useful to prevent accidents.
Read and follow these instructions carefully.

Indication

It refers to indications that can help achieve better performances.

Emitter

It identifies devices that have the function of Emitter.

Receiver

It identifies devices that have the function of Receiver.

2.0 SAFETY AND PROPER USE

Warning

This it is NOT a protective device. Therefore, it should not be used to guarantee personnel safety.

Warning

 Under $\mathbf{1 5 V}_{\mathbf{D C}}$ voltage all outputs are in an OFF state. Over $\mathbf{3 0} \mathbf{V}_{\mathbf{D C}}$ permanent voltage the device may be damaged.
When the device is switched on, outputs are inactive for a certain amount of time known as power on delay (see table below).

Warning

The Emitter emits near-infrared light at non-dangerous levels. The device is classified as RG0 (exempt) according to IEC 62471.

Warning

Please make sure that light curtains are used in proper environmental conditions.
Manual or automatic calibration must always be carried out aiming for the best possible alignment. More than one calibration and alignment adjustment may be necessary to guarantee the best alignment.
Check any reflective surface next to the light beams which may influence them.
Check any transparent panels or similar panels which may change the beam angle of the light curtains .
Prevent the light curtain's optical window from getting scratched or tarnished.
Do not expose the receiver to strong natural or artificial light sources, including stroboscopic light.
Do not expose the receiver directly to optical beams projected by other optical devices.
Ensure that the ambient temperature does not exceed the stated limits.
Bear in mind that smoke, vapour, liquids and powders may alter transparency of air or dirty the optical window. Dispose of unusable or irreparable devices always in accordance with national regulations regarding waste disposal.

Micro Detectors
Italian Sensors Technology

3.0 PRODUCT DESCRIPTION

3.1 Short description

CX2 light curtains are photoelectric devices built according to the IEC 60497-5-2 norms and they must not be considered as safety devices. Therefore, they must not be used to guarantee operators' safety nor to protect users on dangerous machines. They must rather be used to detect objects reducing or obscuring the intensity of light beams hitting the receiver.
The housing is in aluminium, painted in blue RAL5002, size 20x36mm, (20 mm refers to the front side). A groove on the back allows connection with T-shaped components. The top and bottom side are in black PBT, the optical window is in PC, Protection degree is IP67.
Models of this series can be delivered either with $\mathbf{5 m m}$-pitch and controlled height of $\mathbf{1 6 0}, \mathbf{3 2 0}, \mathbf{4 8 0} \mathbf{m m}$ or with $\mathbf{1 0 m m}$-pitch and controlled height of $\mathbf{1 6 0}, \mathbf{3 2 0}, \mathbf{4 8 0}, \mathbf{6 4 0}, \mathbf{8 0 0}, 960 \mathrm{~mm}$. Controlled height is indicated in the item code which goes from 016 to 096. In all models, the axis of the first and last optical elements are at $4,5 \mathrm{~mm}$ from the housing edge. Therefore, the housing is always 9 mm higher than the optical elements.
Nominal sensing distance is $\mathbf{3 m}$ maximum with a 5 mm -pitch and $\mathbf{6 m}$ with a $\mathbf{1 0 m m}$ - pitch.
All models of CX2 series are equipped with 2 sets of 3 LEDs each: green (emitter) or blue (receiver), yellow and red, on the top and on the bottom of the front side. This allows at least one set of LED to be perfectly visible in all applications (see chapter 4, tables 5,6 and 7 for the meaning of indications).
For models consisting of just one motherboard, the two sets of LED give the same information. For models consisting of one motherboard and one (or more) slave board(s), all red LEDs indicate the Dark state (LEDs on) or Light state (LEDs off) related to their single board. Intermediate slave boards have just one red LED, the motherboard and the last slave board mount only the relative bottom and top three LEDs.
For models belonging to this series, it is necessary to wire at least two cables between emitter and receiver: one for synchronism (Sync_1W) and one to the Common. These cables must not exceed 20m length.
Some of CX2 models (see Tab.:1) are provided with a function of partial beams interweaving and their extension is automatically adjusted at Teach-in by selecting the biggest possible extension between $\mathbf{1}$ (none), $\mathbf{1 + 1 + 1}, \mathbf{3 + 1 + 3}, 5+1+5,8+1+8$ beams, according to the distance between emitter and receiver. Sensitivity of all beams, both direct and crossed, can also be equalised with the Teach-in. Therefore, detecting capacity is always optimised and can be near to $1 / 10$ the pitch. Detecting capacity changes according to sensing range. It should be considered that the best performances are guaranteed already from $\mathbf{5 0 0} \mathbf{m m}$ sensing range upwards, see Cap.:5, Tab.:4 and Fig.:1.
Receivers have models either with two digital outputs, a PNP and an NPN output with highest output current of 100mA, or models with two analogue outputs, one with output voltage of $\mathbf{0 - 1 0 V}$ and the other one with output current of $\mathbf{4 - 2 0 m A}$. All outputs are totally protected. Digital outputs switch between two states according to the state of the optics (DARK or LIGHT). Analog outputs indicate a value which is proportional to the active optics (not in blanking) in either LIGHT or DARK state. Mode is defined by NC/NO input. Regarding digital outputs, the state of the optics changes according to state of parallel and crossed beams. For analogical outputs, only the state of parallel beams have to be considered.
Three inputs are available: NC/NO, Teach G/F and Blank Y/N.
NC/NO input determines the state of all outputs. NC or NO state can only be determined when switching on the device. This input can be left either open or permanently connected to the common, or connected to the positive. In the first case, digital outputs will be in a NO state (DARK switching) and the analogue outputs will be proportional to active optics in a DARK state. In the second case, digital outputs will be in an NC state (LIGHT switching) and the analogue outputs will be proportional to the active optics in a LIGHT state.
The Teach G/F input, if connected to the positive, starts a rough calibration. If it is connected to the common, it starts an accurate calibration and the extension of the crossed beams' area is also checked. Calibration determines the power of the single IR LEDs of the emitter and a sensitivity equalisation of the related receivers.
During the calibration phase, in the receiver and emitter only the yellow LED remains on which can be static or flashing. At the end of the procedure the green and blue LEDs light on.
If the Teach G/F input is permanently connected to the positive or to the common, calibration is carried out only at switch-on.
The duration of the calibration depends on the number of beams, the time required will be about 0.5 s for each beam.
The calibration should be performed under conditions of good, or better, perfect alignment.
If during calibration the energy emitted does not reach a value sufficient to determine a state of LIGHT (corresponding to all receivers in LIGHT), the procedure stops once it reaches the maximum permissible current in the IR LED.
This behavior may occur in the case where the active optics are not in view as there is an obstacle that has not been removed, in the case where the test is activated, or in response to a fault.

Avoid using large signal margins, if this mode is necessary to detect objects within semi-transparent materials, carefully check the behaviour of the system.

If Blank \mathbf{Y} / \mathbf{N} input is in a positive state at switch-on, the state of the optics is checked. If some or all optics are in a DARK state, they are excluded (Blanking function is activated). If all optics are in a LIGHT state, they are re-activated (Blanking function is eliminated). During this procedure, output current values and non-equalised reception thresholds are used, therefore performances are not optimised. For this reason, after a Blanking has been completed, a Teach-in is always necessary. In addition to that, connection of Blank \mathbf{Y} / \mathbf{N} input to the positive must be eliminated to avoid another Blanking at the following switch-on. If some optics are broken / not working properly, as soon as the Blanking function is activated, broken optics are not considered any more for evaluating the Dark or Light state of the device. In some of these cases, the light curtain can continue to be used anyway. This maneuver also allows you to locate the faulty optical position. To safely eliminate the Blanking function, the system must be supplied with the Blank \mathbf{Y} / \mathbf{N} input connected to the common. Also in this case, a Teach-in is always necessary afterwards because it shows if there are broken optics or not.
Emitters just have one Test input available. If it is connected to the positive it interrupts the emission and it can be used for checking, also automatically, if the device is working properly or not. In all devices, green or blue LEDs are off if supply voltage is below 5 V , they blink if supply voltage is between 5 and 15 V , they are permanently on if supply voltage is higher and the system can anyway work properly. With the Blanking function activates the intertwining function is excluded.
In all receivers, yellow LEDs are on if outputs are in an ON state. If they are weakly on, they indicate a short or an overload. In all receivers, red LEDs are on with an intensity or a blinking frequency that is proportional to the amount of DARK optics. Red LEDs are off when optics are in a LIGHT state.
These sensors have a standard output with M12 flying connector (220 mm pigtail). The emitter has a 4-pin cable, the receiver has an 8 -pin cable.

	Datasensing S.r.I Strada S. Caterina, 235 41122 Modena Italy Tel. +39059420411 Tel. + Fax +39059253973 www.datasensing.com	CX2 SERIES LIGHT CURTAINS	LANGUAGE
Italian Sensors Technology		Installation and Operation Manual	ENGLISH

3.2 Available models

In the tables, descriptions and model codes, height of light curtains is defined with a number indicating the distance " h " between the first and the last optic, expressed in cm . The housing height " H " of light curtains normally is $\mathrm{H}=(\mathrm{h}+9 \mathrm{~mm}$).

Continues on next page

		CX2 SERIES Light Curtains	LANGUAGE
		Installation and Operation Manual	ENGLI

Chapter 3; Tab. 1

4.0 START-UP INSTRUCTIONS

4.1 Mechanical mounting of CX2 models

It is extremely important to secure the light curtains to a rigid structure, not subject to deformation or strong vibrations.
Decide where to place the Receiver so that it is not subject to strong natural or artificial light sources nor to luminous interference of other sensors.
Keep in mind that the devices are not suitable for outdoor installation, IP67 despite being declared, it is not guaranteed that the long exposure to the weather does not cause water penetration and performance degradation.
Place the Emitter and Receiver facing one another, at the same height above the reference plane, following the same orientation, the output wires of the transmitter and receiver must be on the same side.
The distance between the One elements must not exceed the limits set by the specifications. To secure the light curtains to a supporting structure, use the inserts which must be applied to the rear groove and the brackets which are usually provided (mounting accessory ST151).
If the application is subject to vibrations, which anyway do not prevent the optical alignment, use damping supports.
The optical beams can be partially deflected by nearby reflective surfaces. Because of that, the path beam interruption may not be detected. Therefore, all reflective surfaces and objects should be placed at a minimum safe distance from the optical beam path.
If the deviating effect of a reflective surface cannot be reduced or eliminated, it is necessary that this effect remains stable or, at least, that all system functions work in an acceptable and predictable way.
If the Blanking function needs to be activated due to a mechanical constraint, try first to place light curtains in a way that optics are either completely free or completely covered, also temporarily (just during the activation of blanking). Make sure that optics which could be only partially covered are completely covered during this time.
Temporarily block the emitter and the receiver so that they are aligned and parallel to each other.

4.2 Electrical installation

Use PELV power supplies, in compliance with Chap.6.4. of EN 60204-1.
If using a non-stabilized power supply, the transformer must have double insulation and adequate power, the secondary winding must not exceed 18 Vac . Use a bridge rectifier, a filtering capacitor with a minimum value of $2200 \mu \mathrm{~F}$ for absorptions up to 1 A , for higher absorptions add $2200 \mu \mathrm{~F}$ for each extra Ampere.
Connect the supply cables directly to the source and not downstream of other power or highly inductive devices.
Run the cables of the light curtains in dedicated raceways or where only signals run; do not use raceways already carrying power cables. If you use One separate power supplies for Transmitter and Receiver, they must have in common OV.
Comply with the specification of the maximum length of the connection cables. Make sure that the part or parts of the metal structure on which the sensors are installed are effectively connected to the same earth ground.
Before inserting the connector, check that the mains voltage and the supply voltage are within the required limits, apply the connector and check again that the supply voltage has a correct nominal value and remains within the limits defined in all working conditions. Check the limits in the One extreme conditions of minimum and maximum absorption of all devices connected to the same power supply, especially if this is not a stabilized power supply.

\triangle

Danger!

In order to carry out the following operations, a voltage supply to the emitter and to the receiver is necessary. Before starting this phase, make sure that the outputs' switch cannot lead to any danger.

Considering the wiring diagrams indicated in Chapter 4, Fig. 1, provide for the basic electrical connections necessary for a proper functioning of the device. Make sure that connection for synchronism is available and that Test input of the emitter is not set on positive. If possible, apply the stated loads to the outputs of the receiver, then properly connect the NC/NO input, the receiver can be in this state only at switch-on. Do not connect the Teach input and the Blank input to the positive yet, even if the application later needs this kind of connection.

4.3 Alignment of CX2E0RB models

Apply supply voltage and make sure that the LEDs do not indicate any error state. The green or blue LEDs of emitter and receiver must be on, if they blink it means that supply voltage is not enough. On the emitter, also the yellow LED should be permanently on. If not, make sure once again that the Test input is not set on positive. The red LED must be off. If it is on, it means either that an out-of-scale piloting current value of the IR LEDs resulting from a previous adjustment has been registered, or that a breakdown occurred. If the yellow LED flashes on the transmitter and / or on receiver it means that the synchronization is missed, check the connections. If on the emitter and receiver only the yellow LEDs are ON, it means that a Blanking or a Teach is ongoing, wait for it to finish and check the connections. If on the emitter or receiver, the red LED flashes continuously, it means there was a writing error for the memory due to a power failure, perform a Blanking N to restore.
The yellow LED on the receiver can be on or off, If the red LED is on, it means that at least one optical element is covered.
Make sure that the optics, except for those which must be excluded by the blanking function, are free and remain free.
If it is necessary, start a Blanking by connecting the Blank input to the positive, interrupt and then re-start voltage supply, the blanking process begins. During this phase the yellow LEDs of the emitter and receiver blink. When they stop blinking at the end of the process, the receiver could be unstable.
Disconnect the input Blank G / F from the positive or common terminal and run a mandatory Teach-in momentarily connecting the input Teach G/F to the positive or to the common terminal.

4.4 Verify alignment for CX2 models

Make sure that the signal level achieved with the adjustment is sufficient to guarantee the stability of work. Check this by slightly changing the alignment or by urging the mechanical structure and making sure that the system remains in a light state. In case of instability rerun several times a "Fine" calibration procedure followed by an accurate mechanical alignment, then finally run the Teach required by the application.

Indication

A correct optical alignment with a good signal margin prevents unstable functioning of the light curtains, reduces optical interferences and reflection by shiny surfaces and guarantees better stability in general. Please do not forget to reconnect the cables and to control the correct functioning of the application.

$\cdots{ }^{\text {N }}$		CX2 SERIES LIGHT CURTAINS	LANGUAGE
Italian Sensors Technology		Installation and Operation Manual	ENGLISH

4.5 Electrical drawing

In the following tables the colours of the cables and LEDs are indicated with the abbreviations defined in IEC 60707 in English. The pin assignment is adopted following the IEC 60947-5-2

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{B N}$	$\mathbf{W H}$	$\mathbf{B U}$	$\mathbf{B K}$	$\mathbf{G Y}$	$\mathbf{P K}$	$\mathbf{V T}$	$\mathbf{O G}$
Brown	White	Blue	Black	Grey	Pink	Violet	Orange

Some of the cables in the market may follow the pin assignment following the DIN 47100

CX2 SERIES	$\square[$ RECEIVER	CX2RB MODEL Receiver with PNP e NPN outputs			
M12, 8 pole Male connector	Wiring	Connectors and cables. Colors of CD12M as for IEC 60947-5-2, see Tab.:1; Cap.:8			
		Pin	Color	Signal	Description
		1	BN	24VDC	Power supply input from 16,8 to 30 V
		2	WH	NPN Out	Apply a load connected at the positive, maximum current 100 mA
		3	BU	OV	Supply voltage reference
		4	BK	PNP Out	Apply a load connected to the common, maximum current 100 mA
		5	GY	NC/NO	Input select the logic outputs, at the positive Light ON; at the common or open Dark ON
		6	PK	Teach G/F	Teach-in input: Gross at positive; Fine at common
		7	VT	Blank Y/N	Blanking Activation (at positive) / Deactivation (at common)
		8	OR	Sync_1W	Connect to the same signal of the emitter. Maximum cable length $=20 \mathrm{~m}$

NOTA: $\quad \mathbf{N C / N O}$ and Blank \mathbf{Y} / \mathbf{N} inputs are read only at sensor's switch-on. If NO/NC input is left open or permanently wired to the common, it selects digital outputs as Dark ON. If it is connected to the positive it selects outputs as Light ON
If Blank \mathbf{Y} / \mathbf{N} is connected to the positive, it excludes optics in Dark. If it is connected to the common it activates all optics.
Chapter 4; Tab. 3

NO	Datasensing S.r.I Strada S. Caterina, 235 41122 Modena Italy Fax +39 059253973 www.datasensing.com	CX2 SERIES LIGHT CURTAINS	LANGUAGE
Italian Sensors Technology		Installation and Operation Manual	ENGLISH

CX2 SERIES	\downarrow RECEIVER	CX2RA MODEL Receiver with analogue outputs			
M12, 8 pole Male connector	Wiring	Connectors and cables. Colors of CD12M as for IEC 60947-5-2, see Tab.:1; Cap.:8			
		Pin	Color	Signal	Description
		1	BN	24V ${ }_{\text {dC }}$	Power supply input from 16,8 to 30 V
		2	WH	Ana_I	Analogue Current Output 4-20mA, maximum Voltage output 10 V , minimum resistance 500Ω.
		3	BU	OV	Supply voltage reference
		4	BK	Ana_V	Analogue Voltage Output 0-10V, c.c. Current 60 mA , maximum Voltage output 10 V , minimum resistance $1 \mathrm{~K} \Omega$.
		5	GY	NC/NO	Open or common outputs proportional at optics Darkness, if at positive outputs proportional at optics Lightness
		6	PK	Teach G/F	Teach-in input: Gross at positive; Fine at common
		7	VT	Blank Y/N	Blanking Activation (at positive) / Deactivation (at common)
		8	OR	Sync_1W	Connect to the same signal of the emitter. Maximum cable length $=20 \mathrm{~m}$
Note: NC/NO inputs and Blank Y/N are read only at sensor's power-on. If NO/NC input is left open or permanently wired to the common, it selects analogue outputs proportionally to the number of optics in Dark. If connected to the positive, it selects analogue outputs proportionally to the number of optics in Light. If Blank \mathbf{Y} / \mathbf{N} is connected to the positive, at power on it excludes optics in a Dark. If it is connected to the common it activates all optics.					

Chapter 4; Tab. 4

CX2 SERIES	RECEIVER	CX2RF MODEL Receiver with digital PNP and voltage analogue outputs			
M12, 8 pole Male connector	Wiring	Connectors and cables. Colors of CD12M as for IEC 60947-5-2, see Tab.:1; Cap.:8			
		Pin	Color	Signal	Description
		1	BN	24Vdc	Power supply input from 16,8 to 30V
		2	WH	Ana_V	Analogue Voltage Output 0-10V, c.c. Current 60 mA , maximum Voltage output 10 V , minimum resistance $1 \mathrm{~K} \Omega$.
		3	BU	OV	Supply voltage reference
		4	BK	PNP Out	Apply a load connected to the common, maximum current 100mA
		5	GY	NC/NO	Open or common outputs proportional at optics Darkness, if at positive outputs proportional at optics Lightness
		6	PK	Teach G/F	Teach-in input: Gross at positive; Fine at common
		7	VT	Blank Y/N	Blanking Activation (at positive) / Deactivation (at common)
		8	OR	Sync_1W	Connect to the same signal of the emitter. Maximum cable length $=20 \mathrm{~m}$
NOTA: NC/NO inputs and Blank $\mathbf{Y / N}$ are read only at sensor's power-on. If NO/NC input is left open or permanently wired to the common, it selects analogue outputs proportionally to the number of optics in Dark. If connected to the positive, it selects analogue outputs proportionally to the number of optics in Light. If Blank \mathbf{Y} / \mathbf{N} is connected to the positive, at power on it excludes optics in a Dark. If it is connected to the common it activates all optics.					

Chapter 4; Tab. 5

$M 5^{\circ}$		CX2 SERIES LIGHT CURTAINS	LANGUAGE
		Installation and Operation Manual	ENGLISH

4.5 Panel indications and diagnostics.

One sets of three LEDs each (green, yellow and red) are on the front panel. The One sets provide the same indications. They are located respectively on the upper and lower part of the front panel. For light curtains with just one master board, the One sets are controlled in parallel. In case the curtain has one master board and one slave board, the One sets are controlled separately by the One different boards. The green LEDs or the blue and yellow ones give the same information, whereas the red LEDs show the DARK/LIGHT state (of the receiver) or a breakdown (of the emitter) for each board.
For curtains with one master board and more than one slave board, the central slave boards will be provided just with the red LEDs showing the DARK/LIGHT state for each board. LEDs have different signalling modes which are explained in the table here below.

MEANINGS OF LED SIGNALLING MODES	
	LED is permanently ON
	LED ON at low intensity or intermittent with periodic blinking
	LED blinks continuously
Chapter 4, Tab.:5	

Chapter 4, Tab.:5

NO	Datasensing S.r.I Strada S. Caterina, 235 41122 Modena Italy Tel +39059420411 Fax + 39059253973 www.datasensing.com	CX2 SERIES LIGHT CURTAINS	LANGUAGE
Italian Sensors Technology		Installation and Operation Manual	ENGLISH

5.0 TECHNICAL SPECIFICATIONS

CX2E*R*/**-***V MODELS		TECHNICAL SPECIFICATION							
PARAMETERS		Min.	Nom.	Max.	NOTES				
Power supply									
Supply voltage	V_{DC}	16,8	24	30	From PELV power supply according to EN 60204-1 Chap.6.4				
Residual ripple	V			1,2	Supply voltage must stay within the stated limits				
Absorbed power, Receiver	W	1		2,5	Excluding loads				
Absorbed power, Emitter	W	1		3,0					
Digital Outputs									
Output type	N°	PNP; NPN; Push-Pull			Completely protected outputs				
Current	mA		100		Higher values are interpreted as overload or short circuit				
Voltage drop @100mA	V			1,5	Reduction in output voltage compared to the supply voltage				
Minimum resistive load	Ω	280			Lower values are interpreted as short circuit				
Leakage current	$\mu \mathrm{A}$			10	Value at which the OFF state of the load must be guaranteed				
Tolerated capacitive load	$\mu \mathrm{F}$			0,7	Higher values can be interpreted as short circuit.				
Switching time ON	$\mu \mathrm{s}$		0,05		With load of 220/1000				
Switching time OFF	$\mu \mathrm{s}$	2		10	With load of 220/1000				
Analogue outputs									
Voltage Output	V	0		10	Variation range of the analogue signal				
Minimum resistive value	$\mathrm{K} \Omega$	1			Minimum resistance value applicable to the voltage output				
Current Output	mA	4		20	Variation range of the analogue signal				
Maximum resistive value	K Ω			0,5	Maximum resistance value applicable to the current output				
Ripple overlapped	\%			1					
Conformity	\%	0		+10					
Repeatability	\%			5					
Restore time	ms			0,1					
Short circuit current	mA	60 See also Tab.:1; Cap.:3							
Response time ${ }^{\text {Time delay before availability }}$									
	s			3	All outputs are in the OFF state during this time				
Time delay before availability with Blanking	s	1 * No. of beams			Blank Y/N connected to Positive or Common at Power on				
Teach-in	s	0,5 * No. of beams			Teach G/F momentarily connected to the positive or common				
Outputs response time (formula)	ms	$\mathrm{Tr}=\left(\left(0.2 *\left(\mathrm{~N}^{\circ}-1\right)\right)+1\right)^{*} 2$			Maximum switching frequency $\mathrm{f}=1 /\left(2^{*} \mathrm{Tr}\right)$				
Input at One levels (Test and NC/NO)									
Low or open level	V	0	open	5,8	Rec: Selects function NO (Dark ON). Em: not on Test				
High level	V	5,8		30	Rec: Selects function t NC (Light ON). Em: on Test				
Integration time inputs	ms		20		The state must persist at least for the required time				
Input at three levels (Teach G/F and Blank Y/N)									
Low input	V	0		0,8	Select function Teach F or Blank N				
Open input	V	1,3		2,35	No action				
High input	V	6		30	Select function Teach G or Blank Y				
Input currents									
Input current for low level	$\mu \mathrm{A}$	-250		520	Outgoing or incoming current				
Input current for high level	mA	0,52		1,2	Incoming current				
Optical parameters					See Tab.:2, 3, 4 and Fig.:1				
Ambient									
Models with standard protection according to		IP67			Dust and water protection (immersion for 60 min . at a depth of 1m)				
Working temperature	${ }^{\circ} \mathrm{C}$	-10		55	Without condensation				
Storage temperature	${ }^{\circ} \mathrm{C}$	-25		60	To be respected also during transportation				
Humidity	\%			95\%	Without condensation				
Vibrations according to		Acc. to	IEC 60	47-5-2	It complies with limits and conditions stated in the norm				
Impact according to		Acc. to	IEC 60	47-5-2	It complies with limits and conditions stated in the norm				
Range correction factors									
Use of diverter mirrors			0,85		For each diversion with a mirror				
Environmental factors		0,50 / 0,25			For the presence of dust, vapours / mist, fumes (indicative values)				
Connections									
Cables' section	mm ${ }^{2}$		0,34		To guarantee the stated maximum length				
Total length of cables for supply / output	m			100	With indicated cables' section				
Length of Interconnection cables (extensions)	m			20	Length of connections Sync_1W (a wire and common ground)				
Dimensions									
Housing section	mm	20 (front) x 36			Painted aluminium, colour: opaque blue RAL5002				
Groove for fixing	mm	2/10/6,5			Rear groove, depth / width / width of entry				
Front window width	mm	15 mm			Central width: 13 mm ; material PC				
Outer closings	N°	2			Material: Black PBT + 30\% GF				
Closing screws	N°	2+2			2M, FE37, burnished				
Connectors/Cable									
CX2E Models		1xM12, 4p, Male			Pig-tail External cable length 240 mm , PUR, \varnothing 4,7mm, 0,34mm ${ }^{2}$				
CX2R Models		1xM12, 8p, Male			Pig-tail External cable length $240 \mathrm{~mm}, \mathrm{PUR}, \varnothing 6 \mathrm{~mm}, 0,34 \mathrm{~mm}^{2}$				

Chapter 5 ; Tab.: 1; (see also Chapter 3; Tab.:1).

MS		CX2 SERIES LIGHT CURTAINS	LANGUAGE
		Installation and Operation Manual	ENGLISH

MODELS: CX2E*R*/05-***V (PICH: 5mm)					
OPTICAL PARAMETERS		Min.	Nom.	Max.	NOTE
Operating range (ro)	m	0,1	3		Displacement between sender and receiver
Wavelength of IR LEDs	nm		850		
Aperture angle	deg		$\pm 30^{\circ}$		
Threshold level for Teach G			0,33		Ratio between threshold value and signal relative to the LIGHT state
Detection capability for Teach G	mm		1,5		With a rod of specified diameter, also see the normalized graphics
Threshold level for Teach F			0,8		Ratio between threshold value and signal relative to the LIGHT state
Detection capability for Teach F	mm		1		With a rod of specified diameter, also see the normalized graphics
Immunity for artificial light, direct / indirect	lux	20000/60000			Incandescent lamp, standard calibration (Teach G)
Immunity for artificial light, direct / indirect	lux	1000/2000			Incandescent lamp, fine calibration (Teach F)
Immunity for artificial light, direct / indirect	lux	3000/10000			Fluorescent lamp, standard calibration (Teach G)
Immunity for artificial light, direct / indirect	lux	350/500			Fluorescent lamp, fine calibration (Teach F)

Chapter 5 ; Tab.: 2; (see also Chapter 3; Tab.:1).

MODELS: CX2E*R*/10-***V (PICH: 10mm)					
OPTICAL PARAMETERS		Min.	Nom.	Max.	NOTE
Operating range (ro)	m	0,3	6		Displacement between sender and receiver
Wavelength of IR LEDs	nm		880		
Aperture angle	deg		$\pm 15^{\circ}$		
Threshold level for Teach G			0,33		Ratio between threshold value and signal relative to the LIGHT state
Detection capability for Teach G	mm		2		With a rod of specified diameter, also see the normalized graphics
Threshold level for Teach F			0,8		Ratio between threshold value and signal relative to the LIGHT state
Detection capability for Teach F	mm		1		With a rod of specified diameter, also see the normalized graphics
Immunity for artificial light, direct / indirect	lux	10000/30000			Incandescent lamp, standard calibration (Teach G)
Immunity for artificial light, direct / indirect	lux	1000/10000			Incandescent lamp, fine calibration (Teach F)
Immunity for artificial light, direct / indirect	lux	3000/10000			Fluorescent lamp, standard calibration (Teach G)
Immunity for artificial light, direct / indirect	lux	350/1000			Fluorescent lamp, fine calibration (Teach F)

Chapter 5 ; Tab.: 3; (see also Chapter 3; Tab.:1).

5.1 Detection capability.

The optical crossed beams allows the detection of extremely thin sheets (metal sheets, sheets of paper, envelopes) and objects having smaller diameter than the pitch of the optics. In column \mathbf{A} is reported the interweave automatically acquired during a teaching procedure. In \mathbf{B} it is shown the width of the dimension $\mathbf{Q} \mathbf{a}$ as a percentage of the range $\mathbf{R e}$; the best detecting capability is reported in the columns \mathbf{D}, \mathbf{E} and \mathbf{F}; with the interweaving this capability can be guaranteed in the central area within the values $\mathbf{Q} \mathbf{a}$ and $\mathbf{H a}$, where $\mathbf{H a}$ is the value enclosing the number of central optics for which is active the interweaving acquired.
$\mathbf{H a}=\mathbf{P o}$ *((No-1)-2*(Ni-1))+Do; Po is the Pitch No is the total number of the optics, $\mathbf{N i}$ is the extension of the nominal interlacing acquired $(+\mathbf{1},+3,+5,+8)$, $\mathbf{D o}$ is the diameter of the beam.
The detection capability outside the area $\mathbf{Q a} \mathbf{x} \mathbf{H a}$ is shown in \mathbf{G}; this capability is slightly dependent on the type of calibration and it's valid even if the sensors are not adjusted and with an high excess gain.
In the last row are reported the detecting capabilities with parallel beams, that are valid in all the area $\mathbf{R e}$ * $\mathbf{H t}$.
With the parallel beams it is not possible to detect thin sheets if these run parallel to the beams and between One optics.

DETECTION CAPABILITY												
REF. ${ }^{\text {- }}$	A	B	C	D		E		F		G		
PITCH -	5,10,20 mm			5 mm		10 mm		20mm		5 mm	10mm	20mm
BEAMS MODE	INTERWEAVE	AREA	MDW	MDO		MDO		MDO		MDO*	MDO*	MDO*
	Ni		16	Cf	Cg	Cf	Cg	Cf	Cg	Cw	Cw	Cw
			L6			Teach_F	Teach_G	Teach_F	Teach_G		Non tara	
	(${ }^{\circ}$)	(\% Re)	(\% Re)	(mm)								
Crossed Area Qa $\times \mathrm{Ha}$	1	Re $\times 0,50$	Rex 0,50	1,5	2,5	3	5	8	10	4,5	9	14
	3	$\operatorname{Re} \times 0,83$	$\operatorname{Re} \times 0,1667$									
	5	$\operatorname{Re} \times 0,90$	$\operatorname{Re} \times 0,1$									
	8	$\operatorname{Re} \times 0,93$	$\operatorname{Re} \times 0,0625$									
Parallel	-	Re	-	4	5	8	10	18	20	7	14	24

Tab.:4; Cap.:5, vedere anche Fig.:1.
MDW: for crossed beams, minimum width of the sheet in the $\mathrm{Qa} \times \mathrm{Ha}$
MDO: for crossed beams, minimum detectable diameter in the area Qa xHa
MDO*: for crossed beams, minimum detectable diameter in the area Re $\times \mathrm{Ht}$

\cdots		CX2 SERIES LIGHT CURTAINS	LANGUAGE
		Installation and Operation Manual	ENGLISH

Fig.:1; Cap.:5. . The number of the optics (9), and the interweaving shown (3+1+3) are indicative

$\cdots 0^{\circ}$		CX2 SERIES LIGHT CURTAINS	LANGUAGE
$\xrightarrow{\text { Holian Sensors }}$ Eechnology		Installation and Operation Manual	ENGLISH

6.0 MECHANICAL DIMENSIONS OF LIGHT CURTAINS AND STANDARD ACCESSORIES

6.1 Mechanical dimensions of CX2 light curtains

Fig.:1; Chapter 6.
For Dimensions \mathbf{P}, \mathbf{h} and \mathbf{H} see Chapter 3; Tab.:1
Length pig-tail $\mathbf{L}=\mathbf{2 4 0 m m}$
6.1 Standard Mounting accessories

For the quantity see Chapter:3 Tab.:1;

Micro Detectors	Datasensing S.r.I. Strada S. Caterina, 235 41122 Modena ItalyTel. +39059420411 Fax + 39059253973 www.datasensing.com	CX2 SERIES LIGHT CURTAINS	LANGUAGE
		Installation and Operation Manual	ENGLISH

7.0 MOUNTING OF CX2 LIGHT CURTAINS

Securing CX2 light curtains with accessories' kit ST151. For ST151 quantities see Tab.:1; Chapter 3.		
Place the T-shaped insert (1)	Mount the L-shaped bracket (2) using the T-shaped insert	Secure light curtains to the wall

8.0 LIST OF AVAILABLE ACCESSORIES

M12 CONNECTORS, 4 POLES, WITH CABLE	
CD12M/0B-050A5	M12 connector, straight, 4 poles, female, 5m PUR cable
CD12M/0B-100A5	M12 connector, straight, 4 poles, female, 10m PUR cable
CD12M/0B-150A5	M12 connector, straight, 4 poles, female, 15m PUR cable
M12 CONNECTORS, 8 POLES, WITH CABLE	
CD12M/0X-050A5	M12 connector, straight, 8 poles, female, 5m PUR cable
CD12M/0X-100A5	M12 connector, straight, 8 poles, female, 10m PUR cable
CD12M/0X-150A5	M12 connector, straight, 8 poles, female, 15m PUR cable
STANDARD MOUNTING KIT FOR LIGHT CURTAINS	
ST151	Kit with T-shaped insert with four M5 screws complete with nuts and washers and a L-shaped bracket supplied in adequate quantities at the height of the curtain, see Tab.: 1; Cap.: 3 and Fig.: 2 and 3 Cap.: 6.
VIBRATION DAMPING SUPPORTS	
ST 4V S	Kit of 4 vibration-damping supports for models with optical height of 150
ST 8V S	Kit of 8 vibration-damping supports for models with optical height from 300 to 1050

Chapter 8; Tab. 1

9.0 PACKAGE CONTENT

Each package with a kit for a light curtains' pair has the following content:

- A pair of light curtains composed of emitter and receiver.
- A number of accessories' kits ST151 (T-shaped insert and L-shaped bracket) according to the H height (see Tab.:1; Chapter 3).
- An installation manual in Italian and one in English

Micro Detectors	Datasensing S.r.I. Strada S. Caterina, 235 41122 Modena Italy	CX2 SERIES LIGHT CURTAINS	LANGUAGE
		Installation and Operation Manual	ENGLISH

10.0 CONTROL OF THE INSTALLED LIGHT CURTAINS

10.1 Purpose of controls.

The controls described here below are meant to ensure the functional and reliable performances required.

10.2 Preliminary controls before start-up

- All devices must be correctly installed and well secured.
- The maximum response time must be adequate to the application. Make sure that the sensor's response time is compatible with the specific application, detecting objects of minimum and maximum size, in different positions and, if possible, with even faster movements compared to what the application allows.
- Make sure that no optically interfering devices are in the visual field of the sensor. Make sure that other devices do not undergo interferences by the emitter.
- Make sure that sensors are not exposed to any substance which might dirty or damage the optics.
- Make sure that technical documentation is available for operators in charge of maintenance.

10.3 Controls device efficiency

- State and efficiency of the device can be checked using a test stick, which must be detected in a way that is repetitive in time.
- Make sure that there are no damages nor dirt on optical windows' surface. Scratches and tarnished surfaces can negatively affect the light curtain's resolution.
- If necessary, clean the optical surface with a humid antistatic cloth. Do not use any alcohol, nor solvents, nor abrasive substances.

11.0 CE-CONFORMITY DECLARATION

CX2 curtains comply with the following directives and norms:

- EMC Directive 2014/30/UE
- Harmonised norm IEC 60947-5-2
- Harmonised norm IEC 60947-5-7

The complete version of the CE Conformity Declaration is available on the website:
https://www.datasensing.com

12.0 WARRANTY

For every new CX light curtain, in normal using conditions, Datasensing S.r.l. guarantees the absence of defects in materials and in manufacturing for a period of 36 (thirtyTwo) months.
For this period of time, Datasensing S.r.l. commits itself in eliminating any possible breakdown of the products, by repairing or by replacing the defective parts. Materials and labour are completely free of charge in this case.
Datasensing S.r.l. reserves the right to replace the whole defective device with another which is exactly the same or has equal characteristics, instead of repairing it.

Warranty is valid under the following conditions:

- Not more than $\mathbf{3 6}$ months have elapsed from the date of manufacture.
- The device and its components are in the same conditions in which they were delivered by Datasensing S.r.l..
- Breakdown or malfunctioning is not directly or indirectly due to:
- use for improper purposes;
- no respect of instructions;
- negligence, inexperience, incorrect maintenance;
- repairs, modifications, adaptations not executed by Datasensing S.r.l. personnel, tampering, etc.;
- accidents or impacts (also due to transport or force majeure);
- other events not depending on Datasensing S.r.I..

Devices or parts will be repaired at Datasensing S.r.l.' laboratories, to which the material must be delivered or sent. Shipping costs and the risk of damaging or losing the material during transport will be at the Customer's charge.
All replaced products and parts are owned by Datasensing S.r.I..
Datasensing S.r.l. does not acknowledge other warranties nor rights except for those explicitly described. Therefore, costs, activity interruptions or other elements or circumstances related to non-functioning products or parts of them will not be refunded.

The respect of all norms, indications and prohibitions contained in this document is essential to the correct functioning of light curtains.
Therefore, if these indications are not respected, even partially, Datasensing S.r.I. will not be held responsible under any circumstances for any possible consequence.

